
Research Article
Altered Synchronizations among Neural Networks in
Geriatric Depression

Lihong Wang,1,2,3 Ying-Hui Chou,2,3 Guy G. Potter,2 and David C. Steffens1,2

1Department of Psychiatry, University of Connecticut Health Center, 263 Farmington, CT 06119, USA
2Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
3Brain Imaging and Analysis Center, Duke University, Durham, NC, USA

Correspondence should be addressed to Lihong Wang; lihong001@gmail.com

Received 12 October 2014; Revised 30 December 2014; Accepted 11 January 2015

Academic Editor: Xi-Nian Zuo

Copyright © 2015 Lihong Wang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Although major depression has been considered as a manifestation of discoordinated activity between affective and cognitive
neural networks, only a few studies have examined the relationships among neural networks directly. Because of the known
disconnection theory, geriatric depression could be a useful model in studying the interactions among different networks. In
the present study, using independent component analysis to identify intrinsically connected neural networks, we investigated
the alterations in synchronizations among neural networks in geriatric depression to better understand the underlying neural
mechanisms. Resting-state fMRI data was collected from thirty-two patients with geriatric depression and thirty-two age-matched
never-depressed controls. We compared the resting-state activities between the two groups in the default-mode, central executive,
attention, salience, and affective networks as well as correlations among these networks. The depression group showed stronger
activity than the controls in an affective network, specifically within the orbitofrontal region. However, unlike the never-depressed
controls, geriatric depression group lacked synchronized/antisynchronized activity between the affective network and the other
networks. Those depressed patients with lower executive function has greater synchronization between the salience network with
the executive and affective networks. Our results demonstrate the effectiveness of the between-network analyses in examining
neural models for geriatric depression.

1. Introduction

It has long been postulated that major depression may be
a consequence of failed coordination between the central
executive system and affective processing system [1]. While
a great number of studies [2, 3] have identified abnormal
activation in the regions subserving executive function (e.g.,
dorsolateral prefrontal cortex (dlPFC) and dorsal anterior
cingulate (dACC)) and affective processing (e.g., ventrome-
dial prefrontal cortex (vmPFC), orbitofrontal cortex (OFC),
and amygdala), only a few studies have examined coordina-
tion between the executive system and affective processing
system directly at a network level in major depression.

In addition to the executive and affective processing sys-
tems, the abnormalities in the default-mode network (DMN,
primarily including the anterior and posterior cingulate, and
bilateral lateral parietal cortex areas) and salience network

(including the dorsal anterior cingulate and insula cortices)
in major depression have also been identified [4]. A number
of studies have reported an increased activity of the DMN
in major depression during resting state [5, 6] and persistent
activity of the DMN during tasks [4, 7]. Northoff and Sibille
[8] have suggested hyperactivity of the DMN as one of
the endophenotypes of major depression, which could pre-
dispose individuals with this endophenotype to depression,
whereas Marchetti and colleagues [9] hypothesized that the
increased DMN activity could be a depressive scar resulting
from a dysfunctional switch between internally and exter-
nally oriented attention. Meanwhile, there are also reports
about decreased function in the executive system [2, 3, 10]
that some authors refer to as task-positive deficiency [9, 11].
Interestingly, Hamilton and colleagues [4] have reported
a task-negative (i.e., DMN) dominance over task-positive
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network dominance during resting state in major depression
using an index to quantify the number of time periods when
the DMN signal is stronger than the signal from the task-
positive network. They also proposed that the right anterior
insula might be a driver subserving the switch between
internal and external attentions. They found that while in
healthy controls the anterior insula activity was increased
when task-positive activity was at the peak, in patients with
major depression the anterior insula activity was increased
when the DMN activity was at the peak. The anterior insula
as a key node of the salience network (SN) has recently gained
lots of attention in the neuroimaging research field and has
been found also involved in major depression by many other
authors [12–14]. van Tol et al. [13] reported decreased func-
tional connectivity of the salience network with the medial
prefrontal cortex, ventrolateral prefrontal cortex, and ventral
striatum. Manoliu and colleagues [12] recently also found
decreased connectivity between the insula and dorsal ante-
rior cingulate (dACC) within the salience network, which
was associated with the severity of symptoms and aberrant
DMN/CEN interactions as well. Furthermore, Yuen and
colleagues [14] found the decreased right anterior insular-
dACC connectivity and increased insular-dorsolateral pre-
frontal cortex (dlPFC) connectivity in oldermajor depression
patients who had apathy symptoms.Therefore, it is necessary
to clarify the relationships among the affective, executive,
DMN, attention, and salient systems in major depression.

Major depression in individuals who had the first depres-
sion episode at their older ages (typically older than 50
years) is often referred as geriatric depression. Different from
major depression in younger adults, geriatric depression has
frequently been found in those with cerebrovascular disor-
ders [15, 16], such as white matter hyperintensities, which
are associated with disconnections/low blood supplies in
white matters and gray matters. Because of the disconnection
pathology, geriatric depression could serve as an interesting
model in studying the alteration of the interactions among
different neural networks. However, so far, there is only
one study in geriatric depression which has investigated the
interaction between regions from different neural networks.
That study was focused only on the differences of the insular
connectivity between those who had high (𝑛 = 7) versus low
(𝑛 = 9) apathy symptoms, which needs further confirmation
in a larger sample.Therefore,more studies in geriatric depres-
sion are very necessary.

In recent years, with the development of various analyzing
methods on task-related and task-free functional magnetic
resonance imaging (fMRI) data, analyzing fMRI data at a
neural network level becomes a reality.One of thewidely used
techniques to identify neural networks is the independent
component analysis (ICA). Unlike the seed-based functional
connectivity analysis which is dependent on the location
and size of a seed, the ICA approach is data driven. It
identifies independent components (ICs) based on the spatial
and temporal distribution patterns [17]. Since the regions
within an IC are temporally synchronized and are commonly
activated during a certain cognitive processing simultane-
ously, these regions within an IC are often considered to be

within the same neural network. A number of studies [18–
20] have identified intrinsically connected neural networks
by comparing ICs with task-activated brain regions through
meta-analysis. With the identified neural networks, we can
further investigate the properties of the neural networks and
the relationships among different neural networks.

The majority of previous studies in the literature have
examined the association of regional activity or connectivity
between two regions with depression severity [4, 6, 21, 22].
Although there are some reports on interactions among
regions from different neural networks [23], few studies have
examined the interactions among different neural networks
by evaluating the synchronization of an entire network. The
advantage of evaluating the synchronization of an entire
network over the region-to-region synchronization analysis
is that the former would allow us to compute/understand a
neural model for a mental disorder more easily. To exam-
ine the interactions between neural networks in geriatric
depression, we conducted an ICA and identified the default-
mode, executive, attention, affective, and salience networks
by comparing each component with the template of Laird and
colleagues [19] using the goodness of fit analysis. Then we
computed the significant differences between the depressed
and healthy control groups in the correlations among these
networks. Regression analyses between the network synchro-
nizations with depression severity were also conducted. Since
geriatric depression typically has executive dysfunction, we
conducted the study in geriatric depression to examine the
influence of network interactions on depressive symptoms
and executive function. We hypothesized that the correla-
tion/coordination between or among networks rather than
in a single network has a strong association to depressive
symptoms and executive dysfunction.

2. Materials and Methods

2.1. Participants. Thirty-two individuals who had been diag-
nosed withmajor depressive disorder (19 females, mean ± SD
age: 68 ± 6.5 years) and thirty-two healthy never-depressed
volunteers (18 females, mean ± SD age: 72 ± 8.2 years)
participated in this study. Participants were recruited from
the neurocognitive outcomes of depression in the elderly
study (NCODE). All depressed patients met DSM-IV criteria
for major depression. They were either in a remitted state
(𝑛 = 21) or in an actively depressed state (𝑛 = 11) with
the Montgomery-Åsberg Depression Rating Scale (MADRS)
mean ± SD score of 2.1 ± 1.8 for the remitted and 17.4 ± 9.2
for the actively depressed patients. The exclusion criteria for
depressed subjects included (1) another major psychiatric ill-
ness, including bipolar disorder, schizophrenia, or dementia;
(2) alcohol or drug abuse or dependence; (3) neurological
illness, including dementia, stroke, and epilepsy; (4) medical
illness, medication use, or disability that would prevent the
participant from completing neuropsychological testing; and
(5) contraindications to MRI. All never-depressed subjects
were cognitively intact and had no history or clinical evi-
dence of dementia, and they all scored 28 or more on
the minimental state examination. Among the 32 depressed
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participants, 9 were receiving antidepressant monotherapy (4
on selective serotonin reuptake inhibitors (SSRIs), 2 on sero-
tonin antagonist and reuptake inhibitors (SARIs), 1 on sero-
tonin-norepinephrine reuptake inhibitors (SNRIs), and 2 on
an tricyclic), 9 were receiving combination treatment (4 on
two SSRIs, 2 on SSRI combined with either SARI or nor-
epinephrine-dopamine reuptake inhibitors (NDRIs), 2 on
SARI and NDRI, and 1 on SNRI and NDRI), and 14 were not
on medication (Table 1).

Prior to the fMRI, all subjects completed the StroopColor
and Word Test to examine the executive function. The study
received approval by Duke School of Medicine Institutional
Review Board. All subjects gave verbal and written consent
after being explained the purpose and procedures to be used
in the study.

2.2. Neuroimaging Acquisition. All participants were scanned
using a research-dedicated 3.0 T GE EXCITE HD scanner
(GE Medical Systems, Milwaukee, Wisconsin). First, high-
resolution T1-weighted structural images in coronel view
were acquired with slice thickness of 1mm without a gap
(matrix = 256 × 256 × 216). We then obtained 5-minute
resting fMRI scans for each participant. Participants were
instructed to rest without moving, keep their eyes open,
and focus on a fixation cross-presented in the center of the
screen inside the scanner. Inward spiral sequence functional
images in the axial view were acquired using the following
parameters: TR = 2000ms, TE = 31ms, FOV = 24 cm, flip
angle = 90∘, and matrix = 64 × 64 × 34.

2.3. Data Analyses. Data were preprocessed using the
Duke BIAC resting state pipeline based on the tools
from the FSL analysis package (FMRIB Software Library,
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/, Version 5.98) and locally
developedMATLAB code (MathWorks,Natick,MA), includ-
ing slice-timing alignment, motion correction, coregistra-
tion, nonbrain voxel extraction, and normalization. We also
regressed out six-parameter rigid body head motion, the
signal averaged over the white matter, and signal averaged
over the cerebrospinal fluid regions [24]. Frequencies less
than 0.08Hz were retained [25]. The group independent
component analysis (ICA) was conducted using melodic
and dual regression program following the instructions on
FslWiki (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/DualRegression).
Briefly, we first concatenated all subjects’ data including both
the patient and control groups and calculated the group-
averaged independent components (IC) by limited the
ICs to twenty components to match the study of Laird and
colleagues [19]. Next, we identified the default-mode network
(DMN), central executive network (CEN), central attentional
network (CAN), salience network (SN), and affective network
(AN) by using the goodness of fit test (GOF) [5] to best
match the networks provided by Laird and colleagues [19].
In the case that the second largest GOF value was close to
the first largest GOF value, we kept the component as a
component of interest as well. Next, we regressed spatial ICs
into each subject’s 4D data to generate both subject-specific
component time courses and subject-specific spatial maps as

outputs [26]. Specifically, as described in the FSL webpage
(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/DualRegression), “for
each subject, the group-average set of spatial maps is
regressed (as spatial regressors in a multiple regression) into
the subject’s 4D space-time dataset. This results in a set of
subject-specific timeseries [sic], one per group-level spatial
map. Next, those timeseries [sic] are regressed (as temporal
regressors, again in a multiple regression) into the same 4D
dataset, resulting in a set of subject-specific spatial maps, one
per group-level spatial map.” The 𝑧-score for every voxel was
estimated by normalizing each voxel’s intensity with respect
to intensity of all the voxels in each individual IC. The IC
maps were then compared between groups on a voxelwise
basis for statistical tests using FSL’s randomize permutation-
testing tool. Finally, pairwise Pearson’s correlation coefficient
analyses were conducted to compute the interaction between
any two networks as listed above.

2.4. Statistical Analyses. To identify group difference between
the depression patients and controls in each component iden-
tified as DMN, CEN, CAN, SN, and AN and the inter-IC cor-
relations between any two networks, voxelwise two-sample 𝑡-
tests were computed. Two-sample 𝑡-tests were conducted to
test group differences in inter-IC correlations. Age was used
as a regressor to control the aging effect. To examine the inter-
actions between network activity strength and clinical status,
we also conducted regression analyses using MADRS score
(depression severity) and executive function as measured by
the color-word interference condition of the Stroop task.The
measures of the Stroop task were converted into standardized
score based on age, gender, and race. Significant level was
determined using threshold of 𝑍 > 2.3, 𝑃 < 0.05 with
cluster correction. For the interactions between networks, the
significance was determined using 𝑃 < 0.05 based on the
Monte-Carlo simulation. Specifically, similar to the network-
based statistics [27], ourmultiple comparisonswere corrected
based on nonrandomdata distribution patterns.The first step
was to identify a set of correlations that exhibited a 𝑃 value
less than 0.05. Second, among the set of correlations, we
determined whether a cluster of correlations was significant
based on the size of the cluster. The size of the cluster was
determined by 10,000 Monte-Carlo simulations.

3. Results

3.1. Clinical Profile of the Participants. We summarize the
demographic details, clinical profile, and performance of
participants on the Stroop task in Table 1. Given a non-
significant trend for age difference between the two groups,
with the control group relatively older than the depression
group, we included age as a covariate in subsequent group
comparison analyses. For executive function, the depression
group showed a relatively lower score than the control group
in performing the Stroop task; however, there was not a
significant difference between the two groups (Table 1).

3.2. Differences in Resting-State Activity within and between
Neural Networks between Depression and Control Groups.
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Table 1: The clinical profiles of the participants.

Depression (𝑛 = 32) Control (𝑛 = 32) 𝑃 value
Gender (F/M) 18/14 19/13 0.80+

Age 68.3 (6.5) 71.8 (8.2) 0.06
Years of education 14.9 (3.1) 16.0 (2.5) 0.11
MADRS 7.0 (9.2) 0.0 (0.9) <0.001∗

Number medicated for hypotension 11 8 0.40+

Number medicated for antidepressants 18 0
Monotherapy
SSRI 4
SARI 2
SNRI 1
Tricyclic 2

Combined treatment
Two SSRIs 4
SSRI with either SARI or NDRI 2
SARI & NDRI 2
SNRI & NDRI 1

Executive function (Stroop task) −0.10 (0.82) 0.24 (0.71) 0.08
+Chi-square test, and the rests were two-sample 𝑡-tests; ∗significant results with 𝑃 < 0.05. SSRI = selective serotonin reuptake inhibitor; SARIs = serotonin
antagonist and reuptake inhibitors; SNRIs = serotonin-norepinephrine reuptake inhibitors; NDRIs = norepinephrine-dopamine reuptake inhibitors.
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Figure 1: The ICA components which correspond to different neural networks according to the goodness-of-fit analysis using the templates
of Laird et al. AN = affective network; CAN = central attentional network; CEN = central executive network; DMN = default-mode network;
SN = salience network.

Our aim was to examine whether we can identify altered
interactions among networks that are related to depressive
symptoms and cognitive dysfunctions in geriatric depression.
To achieve this goal, using the results from Laird and col-
leagues [19] as templates, first we identified the components
that were best matched to the default-mode network (DMN,
IC1, corresponding to Laird et al.’s IC13), central executive
network (CEN, IC4, and IC6 corresponding to Laird et al.’s
IC15 and IC18, resp.), central attentional network (CAN,
IC7 corresponding to Larid et al.’s IC7), salience network
(SN, IC10, corresponding to Laird et al.’s IC4), and affective

work (AN, IC12, and IC18, corresponding to Laid et al.’s IC2;
the IC18 was also matched to Laird et al.’s IC1). Figure 1
shows thematched components between the ICs in our study
with Larid et al.’s. The detailed coverage for each component
is listed in Table 2 and Figure 2. More detailed coverage of
each component is shown in axial views in supplementary
sFigure 1 in Supplementary Material available online at
http://dx.doi.org/10.1155/2015/343720.

When comparing each individual network between pa-
tients and controls using two-sample 𝑡-tests, we found signif-
icantly increased IC12 (one of the affective networks, ANs)
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Table 2: The clusters of each IC component identified matches the CEN, CAN, DMN, AN, and SN, respectively.

Network IC Clusters Peak coordinate (MNI𝑋, 𝑌, 𝑍)

DMN IC1
Bilateral medial prefrontal cortex [4, 59, −2]

Bilateral posterior cingulate [−7, −55, 19]; [1, 59, −5]
Bilateral lateral parietal cortex [−42, −65, 36]; [45, −63, 32]

AN

IC12
Bilateral dorsomedial prefrontal cortex [−21, 35, 38]; [28, 42, 40]

Rostral anterior cingulate [6, 47, −4]
Bilateral subgenual cingulate [4, 41, −11]

IC18

Bilateral subgenual cingulate [13, 24, −18]
Bilateral rostral anterior cingulate [0, 61, 13]

Bilateral ventrolateral prefrontal cortex [−36, 37, 4]; [48, 32, 6]
Bilateral orbitofrontal cortex [−38, 34, −16]; [29, 36, −19]

Bilateral amygdala [−28, −1, −16]; [34, −3, −15]
Bilateral caudate [−6, 2, 8]; [10, 10, −2]

CEN

IC6

Left dorsolateral prefrontal cortex [−46, 27, 19];
Left dorsomedial prefrontal cortex [−2, 23, 48]
Bilateral superior parietal cortex [−33, −50, 44]; [30, −58, 46]
Right inferior temporal cortex [−58, −43, −13]

Left anterior part of posterior cingulate [−5, −38, 38]
Right cerebellum [31, −69, −47]

IC4

Right dorsolateral prefrontal cortex [42, 22, 44]
Right dorsomedial prefrontal cortex [6, 27, 41]
Bilateral superior parietal cortex [−46, −50, 46]; [42, −58, 47]
Right inferior temporal cortex [61, −28, −6]

Right anterior part of posterior cingulate [5, −47, 40]
Left cerebellum [−39, −68, −45]

CAN IC7

Bilateral frontal eye field [−21, 2, 53]; [26, 2, 49]
Bilateral precuneus [−11, −69, 56]; [11, −65, 56]

Bilateral parieto-occipital fissure [−28, −82, 29]; [38, −73, 23]
Bilateral lingual gyrus [−13, −58, 11]; [18, −58, 15]

SN IC10
Bilateral dorsal cingulate [3, 27, 20];

Bilateral insula [−38, −14, 6]; [41, −12, 8]
Bilateral parieto-occipital fissure [−13, −62, 15]; [19, −57, 11]

activity specifically in the cerebellar vermis in the depression
group relative to the control group. In fact, the cerebellar
vermis was not represented in the IC12 when we use the
threshold of 𝑍 > 2.3, 𝑃 < 0.05 with cluster correction.
However, the IC12 of the depressed group did have a cluster
in the cerebellar vermis when using the threshold of 𝑍 > 2.3,
𝑃 < 0.001 without cluster correction (Figure 3).

When comparing correlations among networks between
the two groups (pairwise correlations), it was the IC12 that
showed a significant group difference in the synchronizations
between this network with several other networks (Table 3).
Specifically, we found a positive correlation in the IC12 with
IC6 (one of the CENs) in the control group; however, the cor-
relation was significantly reduced (no significant correlation
existed) in the depression group.We also found a significantly
increased correlation (less negative) in the depression group
relative to the control group in the IC12 with IC7 (CAN,
mainly in the precuneus region) and the IC12 with IC10 (the
salience network, SN) (Figure 4).

3.3. Correlation with Depression Severity and Executive Func-
tion. We did not find any significant correlation of the
severity of depressive symptoms with any of the networks or
interactions between any twonetworks.However, as shown in
Figure 5, we found a negative correlation between the Stroop
task performance and the interactions between the IC10 (SN)
and IC6 (one of the CENs) and between IC10 (SN) and IC18
(one of the AN) in the depression group but not in the control
group. In otherwords, in the depression group, thosewhohad
higher synchronization between the salience network and the
central executive network and affective networks were the
ones who had poor task performance on the Stroop task.

3.4. Depression-State Related Alteration. Given the fact that
we had a fair number of patients in a remitted state, we
suspected that the reason that we did not find a significant
correlation between neural activity and depression severity
might be because their relationship is nonlinear; that is, it
might be a depression-state dependent rather than a linear
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Figure 2:The locations of each IC component which correspond to different neural networks according to the goodness-of-fit analysis using
the templates of Laird et al.The IC components were computed using dual regression analysis by combining the data from both the depression
and never-depressed control group (𝑍 > 2.3, 𝑃 < 0.05 with cluster correction).

Table 3: Mean (SD) inter-IC correlations that showed significant group differences and that correlated with performance of the Stroop task.

Control Depression 𝑃 value
IC12(AN)-IC6(CEN) correlation 0.30 (0.28) 0.15 (0.26) 0.03
IC12(AN)-IC7(CAN) correlation −0.39 (0.33) −0.22 (0.32) 0.04
IC12(AN)-IC10(SN) correlation −0.18 (0.29) −0.02 (0.32) 0.04
Stroop performance with IC10(SN)-IC6(CEN) correlation 𝑟 = −0.34 0.05
Stroop performance with IC10(SN)-IC18(AN) correlation 𝑟 = −0.51 0.003

relationship. Therefore, we subsequently examined the dif-
ferences in neural networks and interactions of networks
between the remitted versus the actively depressed groups
and between the remitted versus the control groups. As
shown in Figures 3(c) and 3(d), the increased cerebellar
vermis activity shown in the pooled depression group relative
to controls was mainly driven by the remitted group in
comparison with controls. The increased cerebellar vermis
activity was not found in the actively depressed group in
comparison with the control group. Instead, we found signif-
icantly increased resting activity of IC18 (another AN) in the
left orbitofrontal cortex and ventromedial prefrontal cortex in
the actively depressed group compared with both the control
group and the remitted patient group (Figure 6). Therefore,
we believe the increased orbitofrontal cortex of AN should
be a depression-state effect.

We also examined the group differences in network syn-
chronizations between the actively depressed versus control,
actively depressed versus remitted, and remitted versus con-
trol groups. The analyses confirmed the network interaction
results in the combined patient sample, in that the significant
positive correlation between IC10 (SN) and IC6 (CEN) and
the negative correlation between IC10 (SN) and IC7 (CAN)

in the control group were significantly less positive or less
negative in the actively depressed group. There were no sig-
nificant group differences between the actively depressed and
remitted groups or between the remitted and control groups
among the network interactions.

4. Discussion

We investigated the interactions among different intrin-
sic connectivity networks in patients with both acute and
remitted geriatric depression and found that depression
patients had significant alterations in the synchroniza-
tions/antisynchronizations between the affective network
with other networks including the central executive network,
attentional network, and the salience network. In addition,we
found depressive-state specific increase in the orbitofrontal
area of the affective network. Although these changes were
not correlated with depression severity, the significant dif-
ferences confirmed in the acutely depressed group indicate
an importance of the interactions between networks as the
neuropathology of major depression.

It is interesting that the depression group mainly had
altered correlations between the component of the affective
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Figure 3: (a) Component 12 (IC12), one of the affective networks,
in the control group; (b) IC12 in the depression group. To show
the voxels in the cerebellum, (a) and (b) were based on threshold
of 𝑍 > 2.3, 𝑃 < 0.001 without cluster correction. (c) Regions
within IC12 which showed significantly increased activity in the
depression group (all patients) related to the control group; (d)
regions within IC12 which showed significantly increased activity in
subjects remitted from depression (part of patients in the depression
group) related to the controls. (c) and (d) were based on threshold
of 𝑍 > 2.3, 𝑃 < 0.05 with cluster correction.

network (including the orbitofrontal, subgenual cingulate,
and the dorsomedial prefrontal cortex) with other neu-
ral networks. This component best matched component 2
(subgenual cingulate and orbitofrontal cortex) of Laird and
colleagues’ study and the authors indicated its role in
“olfaction, gustation, and emotion” [19]. Previous studies
in the literature using task-related fMRI have frequently
found activation in the orbitofrontal and the dorsomedial
prefrontal cortex during emotion related tasks, particularly in
tasks related to emotion expectation and emotional learning
[28–30]. It is hypothesized that medial prefrontal cortex
(mPFC) may use the inputs from the orbitofrontal cortex
(OFC) as signals of internal states to select appropriate
behaviors during automatic cognitive change paradigms [31].
In fact, in the model of Phillips and colleagues [31], the
OFC, mPFC, and subgenual cingulate, together with the
hippocampus and parahippocampus, could function as an
automatic emotion regulation system. They also proposed
the central executive system including dorsolateral prefrontal
cortex, dorsomedial prefrontal cortex, and dorsal anterior
cingulate as voluntary emotion regulation system. Phillips
and colleagues pointed that the voluntary emotion regulation
system function may be mediated by the OFC and subgenual
cingulate [31]. Consistently, we found a positive correlation
between the automatic emotion regulation system (IC12) and
the voluntary emotion regulation system (IC6) in the healthy

control group, the correlation did not exist in the depression
group, suggesting that emotion regulation requires good
coordination/synchronization between the automatic and
voluntary systems. That is, the synchronization between the
two systems was broken in depressed patients, which could
result in depressive symptoms.

We also found a negative correlation between the IC12
with IC7 and IC10 in the healthy control group and the
correlation become less negative in the depressed group. The
IC7 located at the frontal eye area and the precuneus areas
and best matched the IC7 of Laird’s study which should be
an attentional network, whereas IC10 matched the IC4 of
Laird’s study (the bilateral anterior insula/frontal opercula
and ACC) which should be the salience network. The
salience network recently has been hypothesized to play an
important role in facilitating attentional transition between
cognition and emotion/interoception [32, 33]. Negative
correlations between the automatic emotional regulation
system with the attentional system and the salient system
suggest that when the automatic emotional regulation system
was working, attention to affective stimuli and attentional
transition from cognition to emotion/interoception would
be suppressed, which could be a consequence of successful
automatic emotional regulation. However, the network
interactions disappeared in the depressed group. Together
with the discoordination of the automatic emotion regulation
system with the voluntary emotion regulation system, we
speculate that the major deficits in our depression group
were the discoordination between the affective (automatic
emotion regulation) system and the other neural systems
(central executive network, cognitive attention, and attention
transition between cognition and emotion/interoception).
Although we did not find a significantly linear correlation
between the network interactions with depression severity,
the subgroup analysis confirmed the results were more
significant in the currently depressed group than the
remitted group. Although our study sample was older adults,
our findings are largely in consistent with Mayberg [1] and
Philips’s neuroscience model of depression and emotion.

Since we mainly found a discoordination between the
affective networks with other networks, we speculate that
the primary deficits in depression could be in the automatic
emotion regulation system of the affective network which
have resulted in the interaction deficits between this network
and other networks. Indeed, we found increased activity in
the left orbitofrontal cortex area (although not IC12 but IC18
instead) in depression, especially in the actively depressed
group relative to both the remitted depression group and
healthy control group (suggesting a depressive state-related
alteration). As shown in the results, there are some spatial
overlaps in the ventromedial prefrontal and orbitofrontal
regions between the IC18 and IC12. Similar to IC12, the IC18
also matched the IC2 as well as IC1 of Lairds’ study, but the
IC18 also included the limbic and brainstem regions, all of
which should also be part of the automatic emotion regu-
lation network. The pathological deficit in the orbitofrontal
cortex in depression has long been well documented [28].
Rajkowska et al. [34] found a decrease in cortical thickness
of orbitofrontal cortex in depressed patients. In older adults,
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in a control subject (ID10) and a depression subject (ID37) to illustrate the interaction effect between each paired neural networks. The
significance was tested using Monte-Carlo simulation.

decreased volume of the orbitofrontal cortex has been
reported in many studies [35–37]. Increased metabolism
or regional cerebral blood flow (rCBF) of the orbitofrontal
cortex has been shown in unmedicated depressive patients
[38] although decreased orbitofrontal activation was found
associated with anxiety symptoms [39].Therefore, in consist-
ent with Drevets and colleagues’ theory [28], increased rest-
ing activity in the orbitofrontal area of the automatic emotion
regulation network could be a core deficit in depression.

In this study, we also found a negative correlation between
the Stroop task performance and the synchronization of the
salience network (IC10) with the central executive net-
work/voluntary emotion regulation network (IC6) as well as
the synchronization of the salience network with the auto-
matic emotion regulation network (IC18) in the depression

group but not in the control group. In other words, those
patients, who had poor performance in the Stroop task, had
stronger synchronization between the salience network and
the emotional regulation (both voluntary and automatic) net-
works. The results may implicate that, those whose salience
network and emotional regulation networks are positively
synchronized, may bemore easily to reallocate their attention
to emotional events, which then could distract them from
ongoing cognitive tasks and result in poor performance in
the executive tasks such as the Stroop task. Supportively,
in the control group, the salience network was negatively
correlated with the automatic emotion regulation network
(IC12 though). However, it is difficult to explain why those
who had poor performance during the Stroop task had a
positive correlation between the salience network and the
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voluntary emotional regulation network. While it might
be a compensatory effect, future studies to investigate the
synchronization between the salience network and the volun-
tary emotional regulation (central executive) network during
performing the Stroop task scan is necessary to explain the
phenomenon.

There are a couple of technical issues that need to be dis-
cussed here. First of all, we conductedmotion correction dur-
ing preprocessing which has not been frequently reported in
the literature in ICA analyses.We rationale that for themajor-
ity of functional connectivity analysis (e.g., seed-based con-
nectivity analysis), in addition to the slice-time correction,
motion correction, and normalization, filtering and regress-
ing out covariates (such as six motion parameters, white mat-
ter signal, and CSF signal) are also essential during data pre-
processing [40]. Regressing out estimatedmotion parameters
and physiological signals can largely increase the gray matter
temporal signal to noise [41]. We believe that it makes sense
to include these preprocessing steps before ICA. We expect
that performing ICAwithout these preprocessing stepswould
probably increase some independent components of noise.
Secondly, one may concern how our interested components
were influenced by the template which we used in the study.
It is worth to note that the template provided by Laird and
colleagues was based on a metadata set associated with 8637
functional brain imaging experiments across 31,724 subjects.
We believe the key elements of each network do not deviate
much from the template of other datasets [20], although the
naming of the components is relatively different (e.g., the
affective network that we named here was referred as “limbic”
by Yeo and colleague). The number of ICs should have some
influences on our results.How to describe/present neural net-
works and label their functions is one of the hot research areas
and an ideal solution for mapping brain function may arrive
in the very near future. In addition, the networks we are dis-
cussing in this study have covered several subnetworks. For
example, our salience network included the bilateral insula
and dorsal anterior cingulate. As indicated by Menon and
Uddin [33], the anterior insula has different roles from the
posterior insula. The anterior insula, not the posterior one,
should be part of the salience network. Similarly, the function
of subcomponents within DMN is also different [18], which
could be the reason why we did not find a significant change
in the DMN in depression patients compared with the con-
trols. Therefore, instead of 20 components in the ICA anal-
ysis, using a larger number of components to define neural
networks in a fine scale might leads to different conclusions.

In addition, we only studied the interactions between
any two neural networks at a time. Using more complicated
models that calculate the interactions among the networks
simultaneously is necessary to confirm our results. We stud-
ied the internetwork correlations in geriatric depression
because there have been known pathological disconnections
in geriatric depression. Thus, our results cannot be general-
ized to younger depression patients. Because different regions
might be involved in the pathology of geriatric depression due
to large variations of outcomes fromcerebrovascular diseases,
further studies should be conducted to examine whether
and how different cerebrovascular deficits affect our findings.

This study is also limited by the small sample size and
different medications of the depression patients. The small
number of actively depressed patients may impact on the
robustness of the significance of our results. This might
explain why we only found significant alterations in the
affective network but not in the executive network. Based
on the results from the small number of patients, perhaps
what we may conclude here is that at least deficits in the
affective networkweremore robust and obvious than those in
the executive network in the actively depressed group. Future
replication studies in unmedicated patients with geriatric
depression in a larger sample are warranted to confirm our
conclusions.

While deficits of resting activity in depression have been
reported in a number of studies in major depression, the
aberrant interactions among intrinsic neural networks have
not been demonstrated previously. Although our current
study cannot determine which was the primary deficit in
major depression firmly, the altered network activity, or
the interactions among networks, we were able to examine
the interactions between networks directly using the ICA
approach. Our results have demonstrated that hyperactivity
within the affective network (the automatic emotion regula-
tion system), in particular the orbitofrontal cortex, in con-
junction with sparse correlation among the central executive
network, attentional network, and the salience network, is the
core dysfunction of older depression patients during resting
state. The results are in consistent with several depression
models proposed in the literature and indicated that studying
the correlations among networks is an effective approach in
revealing neural mechanisms of depression.
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